The CMU METAL Farsi NLP Approach
نویسندگان
چکیده
While many high-quality tools are available for analyzing major languages such as English, equivalent freely-available tools for important but lower-resourced languages such as Farsi are more difficult to acquire and integrate into a useful NLP front end. We report here on an accurate and efficient Farsi analysis front end that we have assembled, which may be useful to others who wish to work with written Farsi. The pre-existing components and resources that we incorporated include the Carnegie Mellon TurboParser and TurboTagger (Martins et al., 2010) trained on the Dadegan Treebank (Rasooli et al., 2013), the Uppsala Farsi text normalizer PrePer (Seraji, 2013), the Uppsala Farsi tokenizer (Seraji et al., 2012a), and Jon Dehdari’s PerStem (Jadidinejad et al., 2010). This set of tools (combined with additional normalization and tokenization modules that we have developed and made available) achieves a dependency parsing labeled attachment score of 89.49%, unlabeled attachment score of 92.19%, and label accuracy score of 91.38% on a held-out parsing test data set. All of the components and resources used are freely available. In addition to describing the components and resources, we also explain the rationale for our choices.
منابع مشابه
Applying Natural Language Processing Techniques for Effective Persian- English Cross-Language Information Retrieval
Much attention has recently been paid to natural language processing in information storage and retrieval. This paper describes how the application of natural language processing (NLP) techniques can enhance cross-language information retrieval (CLIR). Using a semi-experimental technique, we took Farsi queries to retrieve relevant documents in English. For translating Persian queries, we used a...
متن کاملA New Method for Improving Computational Cost of Open Information Extraction Systems Using Log-Linear Model
Information extraction (IE) is a process of automatically providing a structured representation from an unstructured or semi-structured text. It is a long-standing challenge in natural language processing (NLP) which has been intensified by the increased volume of information and heterogeneity, and non-structured form of it. One of the core information extraction tasks is relation extraction wh...
متن کاملThe CMU TransTac 2007 Eyes-free and Hands-free Two-way Speech-to-Speech Translation System
The paper describes our portable two-way speech-tospeech translation system using a completely eyesfree/hands-free user interface. This system translates between the language pair English and Iraqi Arabic as well as between English and Farsi, and was built within the framework of the DARPA TransTac program. The Farsi language support was developed within a 90-day period, testing our ability to ...
متن کاملAn NLP Approach for Evolution of Heat Exchanger Networks Designed by Pinch Technology
Common methods to design heat exchanger networks (HENs) by pinch technology usually need an evolutionary step to reduce the number of heat transfer units. This step <span style="font-size: 10pt; color:...
متن کاملA Semantic Approach to Person Profile Extraction from Farsi Documents
Entity profiling (EP) as an important task of Web mining and information extraction (IE) is the process of extracting entities in question and their related information from given text resources. From computational viewpoint, the Farsi language is one of the less-studied and less-resourced languages, and suffers from the lack of high quality language processing tools. This problem emphasizes th...
متن کامل